无码人妻久久一区二区三区免费丨,91精品欧美久久久久久,色肉色伦交av色肉色伦,操逼贱货调教操骚逼视频

Your Position: Home > Product > Chemical Biology

Carboxyl modified magnetic beads (PuriMag G-COOH beads)

2025/6/16 viewers
  • BrandPuriMag
  • TypePuriMag G Series
  • order
Introduction

Ordering information

Name

Cat. No.

Vol.

Scheme

GS-COOH

10 C spacer

PMG007-2

PMG007-5

2ml 

5ml

GL-COOH

20 C spacer

PMG008-2

PMG008-5

2ml 

5ml


1. Overview

PuriMag? G-COOH carboxyl-functionalized magnetic nanoparticles are uniform, polymer-coated superparamagnetic nanoparticles. Their hydrophilic surface ensures excellent dispersibility, low non-specific adsorption, and easy handling in various buffers. The surface is coated with a high density of carboxyl functional groups, enabling permanent immobilization of various amine-containing ligands.

The surface carboxyl groups (COOH) can be used for covalent coupling of ligands such as proteins, peptides, and nucleic acids. Activation of the magnetic beads' surface carboxyl groups with EDC allows ligands to couple via their primary amine groups, forming stable amide bonds.

PuriMag? G-COOH magnetic beads are suitable for various magnetic separation applications, including affinity enrichment, protein purification, immunoprecipitation, and cell sorting.


2. product description

Product Specifications

Description

Polymer coated Fe3O4 nanoparticles

Particle Size

200 nm

Number of Beads

~1.7×1010 beads/mg

Matrix

Proprietary polymer

Functional group

Carboxyl group

Group density

~300 μmole / g of Beads

Magnetization

60~70 EMU/g

Formulation

10 mg/ml suspension in DI water

Stability

pH 3.5~10, 4~80 , most organic solvents

Storage

1 year at 2~8 . Do not freeze.


3. Instructions for Use

Coupling Buffer: 50 mM MES [2-(N-morpholino)ethanesulfonic acid], pH 6.0, 0.01% Triton X-100.

Coupling Reagents:
EDC [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide];
Sulfo-NHS [N-hydroxysulfosuccinimide] (Optional).
Quenching Buffer: TBS (25 mM Tris-Cl, 130 mM NaCl, 2.7 mM KCl), pH 8.0, 0.01% Triton X-100.
Storage Buffer: TBS or PBS containing 0.01% Triton X-100 or 0.01% Tween 20. Add preservative if required.

The following protocol describes ligand coupling to 100 μL of carboxyl magnetic beads. This protocol can be scaled up or down as needed. Optimization of bead activation conditions (EDC, EDC/NHS, pH) and coupling conditions (ligand concentration, coupling buffer, pH, reaction volume, and incubation time) is strongly recommended.

Notes:
    ■ Ensure uniform suspension of magnetic beads by vortexing.
    ■ For optimal performance:

            Perform coupling in amine-free buffers.

            Protein concentration: 0.5–4 mg/mL; oligonucleotide concentration: 20–100 μM (free of other proteins).

            Higher protein concentrations allow flexible optimization of reaction volumes.

             Avoid buffers containing Tris, glycine, acetate, or citrate.

    ■ 50 mM MES buffer (pH 6.0) with 0.01% Triton X-100 may be used for activation and coupling.

            Chemically synthesized oligonucleotides must contain a 5′-amine group for bead coupling.

    ■ Beads contain 0.5% SDS to stabilize the suspension. Although not strictly required, including 0.01–0.05% Triton X-100 or 0.01–0.05% Tween 20 in all buffers will prevent bead aggregation and improve dispersion.


Coupling Protocol A: Two-Step Coupling Using EDC
(Recommended for coupling proteins to PuriMag? Carboxyl Beads)

This protocol first activates the carboxyl groups on the beads using the water-soluble carbodiimide EDC to form amine-reactive intermediates. After removing EDC, the protein ligand is added and couples via its primary amines to the activated carboxyl groups on the beads.

        1.Ensure the protein/ligand is in amine-free coupling buffer. Use 50–400 μg protein per 100 μL coupling buffer. Keep on ice.

        2.Vortex the carboxyl beads to resuspend. Transfer 100 μL beads to a 1.5 mL microcentrifuge tube. Separate magnetically and remove supernatant.

        3.Add 200 μL coupling buffer, vortex for 20 sec. Separate magnetically and remove supernatant.

        4.Repeat wash (Step 3) twice more.

        5.Prepare fresh EDC solution (50 mg/mL) in coupling buffer.

        6.Add 80 μL coupling buffer and 20 μL fresh EDC solution to the beads. Mix well. Incubate at room temperature (RT) for 15 min. Separate magnetically and remove supernatant.

        7.Wash beads with 200 μL coupling buffer, vortex to mix. Separate magnetically and remove supernatant immediately (amine-reactive intermediates are unstable).

        8.Add 100 μL coupling buffer and 50–400 μg protein/ligand to the beads. Vortex to mix.

        9.Incubate at RT for 30 min (optimal time may range from 0.5–4 h depending on ligand and concentration).

        10.Place tube in magnetic stand, separate magnetically, and remove supernatant (Save supernatant for analysis if optimizing protocol; contains unbound ligand).

        11.Add 500 μL quenching buffer to beads. Vortex for 20 sec. Separate magnetically and remove supernatant.

        12.Add 500 μL quenching buffer to beads. Incubate at RT for 30–60 min. Separate magnetically and remove supernatant.

        13.Add 500 μL quenching buffer to beads. Vortex vigorously for 20 sec. Separate magnetically and remove supernatant. Repeat this wash twice more.

        14.Remove tube from magnetic stand. Add 100 μL storage buffer. Vortex to mix and store beads at 2–8°C.


Coupling Protocol B: Two-Step Coupling Supplemented with Sulfo-NHS
(Similar to Protocol A but uses Sulfo-NHS to stabilize intermediates and enhance efficiency)

        1.Ensure protein/ligand is in amine-free coupling buffer. Use 50–400 μg protein per 100 μL coupling buffer. Keep on ice.

        2.Vortex carboxyl beads to resuspend. Transfer 100 μL beads to a 1.5 mL tube. Separate magnetically and remove supernatant.

        3.Add 200 μL coupling buffer, vortex vigorously for 20 sec. Separate magnetically and remove supernatant.

        4.Repeat wash (Step 3) twice more.

        5.Prepare fresh solutions in coupling buffer: EDC (50 mg/mL) and Sulfo-NHS (50 mg/mL).

        6.Add 60 μL coupling buffer20 μL fresh EDC solution, and 20 μL fresh Sulfo-NHS solution to the beads.

        7.Mix and incubate at RT for 15 min. Separate magnetically and remove supernatant.

        8.Wash PuriMag? beads with 200 μL coupling buffer. Vortex to mix. Separate magnetically and remove supernatant.

        9.Add 100 μL coupling buffer and 50–400 μg protein/ligand. Vortex to mix. Incubate at RT for 0.5–4 h.

        10.Place tube in magnetic stand, separate magnetically, and remove supernatant (Save for analysis if optimizing).

        11.Add 250 μL quenching buffer to beads. Vortex for 20 sec. Separate magnetically and remove supernatant.

        12.Add 500 μL quenching buffer to beads. Incubate at RT for 30–60 min. Separate magnetically and remove supernatant.

        13.Add 250 μL quenching buffer to beads. Vortex vigorously for 20 sec. Separate magnetically and remove supernatant.

        14.Remove tube from magnetic stand. Add 100 μL storage buffer. Vortex to mix and store beads at 2–8°C.


Coupling Protocol C: Single-Step Coupling
(Fast protocol where beads, EDC, and ligand are added simultaneously. Best for oligonucleotides/small molecules when activation doesn't interfere)

        1.Ensure protein/ligand is in amine-free coupling buffer. Use 50–400 μg protein or 1–5 nmol oligonucleotide per 100 μL coupling buffer. Keep on ice.

        2.Vortex carboxyl beads to resuspend. Transfer 100 μL beads to a 1.5 mL tube. Separate magnetically and remove supernatant.

        3.Add 200 μL coupling buffer, vortex vigorously for 20 sec. Separate magnetically and remove supernatant.

        4.Repeat wash (Step 3) twice more.

        5.Remove tube from magnetic stand. Add 50–400 μg ligand in 80 μL coupling buffer to the beads.

        6.Incubate at RT for 30 min.

        7.Prepare fresh EDC solution (50 mg/mL) in coupling buffer.

        8.Add 20 μL fresh EDC solution to the bead mixture. Vortex to mix. Incubate at RT for 0.5–4 h with continuous mixing.

        9.Separate magnetically and remove supernatant (Save for analysis if optimizing).

        10.Add 500 μL quenching buffer to beads. Vortex for 20 sec. Separate magnetically and remove supernatant.

        11.Add 500 μL quenching buffer to beads. Incubate at RT for 30–60 min. Separate magnetically and remove supernatant.

        12.Add 500 μL quenching buffer to beads. Vortex vigorously for 20 sec. Separate magnetically and remove supernatant. Repeat this wash twice more.

        13.Remove tube from magnetic stand. Add 100 μL storage buffer. Vortex to mix and store beads at 2–8°C.


Appendix: Immobilization of Small Molecule Compounds Containing Primary Amines onto Carboxyl Magnetic Beads in Organic Phase

For screening purposes, it is essential to first optimize the amount of ligand immobilized on the beads. The immobilized ligand density can be varied by altering ligand concentration. This protocol demonstrates a method for immobilizing ligand concentrations in four steps (0 mM, 0.1 mM, 0.3 mM, and 1 mM) onto COOH-functionalized magnetic beads.

1. Materials
1.1 Beads & Ligand
? PuriMag? G-COOH Carboxyl Beads: 10 mg (Functional group density: Approx. 200 nmol/mg)
? Ligand: ~2 mg

1.2 Reagents
? N,N’-Dimethylformamide (DMF): 18 mL
? N-Hydroxysuccinimide (NHS), M.W. 115.09: 0.1 g
? 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC?HCl), M.W. 191.70: 100 mg
? Aminoethanol, M.W. 61.08: 200 μL
? Triethylamine, M.W. 101.19
? Methanol (MeOH): 4 mL

1.3 Equipment
Centrifuge, Vortex Mixer, Rotating Mixer, Ultrasonic Disperser, Magnetic Stand

2. Method
2.1 Mechanism

2.2 Procedure
2.2.1 Active Esterification

        1.Prepare 500 μL of 1M NHS solution by dissolving NHS in DMF.

        2.Transfer carboxyl beads into a 1.5 mL centrifuge tube. Repeat for another tube (total 10 mg beads).

        3.Perform magnetic separation at RT. Discard supernatant.

        4.Add 500 μL DMF, disperse beads.

        5.Perform magnetic separation at RT. Discard supernatant.

        6.Repeat steps 4-5 twice more (total 3 washes).

        7.During washing, add 38.4 mg (200 μmol) EDC?HCl to a new 1.5 mL tube.

        8.After DMF washes, add 800 μL DMF to beads and disperse.

        9.Add 200 μL prepared 1M NHS solution, mix well.

        10.Transfer entire volume from step 9 into the tube from step 7. Mix well.

COOH beads (mg)

5

DMF (μl)

800

1M succinimide (μl)

200

EDC.HCl (mg)

38.4

Total (μl)

1000

        11.React at RT for 2 h with vortex mixing.

        12.Perform magnetic separation at RT. Discard supernatant.

        13.Add 500 μL DMF, disperse beads.

        14Perform magnetic separation at RT. Discard supernatant.

        15.Repeat steps 13-14 four more times (total 5 washes).

        16.Disperse beads in 100 μL DMF each (NHS-activated bead concentration: 2.5 mg/50 μL).

2.2.2 Ligand Immobilization

        1.Prepare 1 mL of 1 mM ligand solution by dissolving ligand in DMF.

        2.Prepare 3 mL of 1M aminoethanol solution in DMF.

        3.Aliquot 2.5 mg (50 μL) NHS-activated beads into four microtubes. Perform magnetic separation at RT. Discard supernatant.

        4.Add 200 μL DMF to each tube, disperse beads. Perform magnetic separation at RT. Discard supernatant.

        5.Add DMF and prepared ligand solution. Disperse beads via ultrasonication.

Concentration (mM)

0

0.1

0.3

1

NHS beads (mg)

2.5

2.5

2.5

2.5

DMF (μl)

500

450

350

0

1mM ligand  (μl)

0

50

150

500

Total  (μl)

500

500

500

500

            *Note 1: To prevent localized high concentration, add ligand solution after DMF has been added to beads.*

            *Note 2: For hydrochloride salt ligands, add two molar equivalents of triethylamine. Prepare 4 mM triethylamine and 2 mM*             *ligand solutions, then mix equal volumes.*

        6.React at RT for 70 min with vortex mixing.

        7.Perform magnetic separation at RT. Transfer supernatant to new tube (Supernatant A).

        8.Add 500 μL aminoethanol solution to remaining beads. Disperse via ultrasonication.

        9.React at RT for 2 h with vortex mixing (blocks unreacted carboxyl groups).

        10.Perform magnetic separation at RT. Transfer supernatant to new tube (Supernatant B).

        11.Add 500 μL 50% MeOH, disperse beads via ultrasonication.

        12.Perform magnetic separation at RT. Discard supernatant.

        13.Repeat steps 11-12 twice more (total 3 washes).

        14.Disperse beads in 100 μL 50% MeOH and store at 4°C (ligand-immobilized bead concentration: 0.5 mg/20 μL).


More Products
俄罗斯一级毛片免费视频| 精品H无码专区在线视频| 日女人骚逼逼精品555| av电影在线观看不卡的| 久久久久国色av免费观看| 逼逼视频不用下载免费看| 99久久无色码亚洲字幕| 欧美日韩综合一区二区三区| 欧美日韩一区二区三区四区| 日本一道一区二区三区四区| 朝鲜:肥婆性爱| 东京热国产精品一区二区| 插插爽视频看看| 成年视频XXX在线观看| 久久亚洲精品视频网站上| 国产亚洲欧美一区二区精| 亚洲孕天码区二区三区久久| 久久午夜无码鲁丝片秋霞| 香蕉视频在线观看啪啪啪| 国产精品一区二区三区日韩| 两个日本女人跪舔大鸡巴| 亚洲一区二区三区毛带片| 被捅逼逼啊啊啊| 日本精品久久久久久久久| 2021最新国产在线人| 99视频精品全部免费品| 亚洲美女丝袜美腿喷白浆| 同性女同中字幕有码在线| 鲁啊鲁啊乱视频在线观看| 羞羞国产污污无遮挡网站| 亚洲1区2区3区精华液| 色呦呦国产精品网站入口| 国产精品久久秋霞鲁丝片| 在美国的留学生草比视频| 亚洲欧美日韩中文v在线| 翁公在厨房添我下面小说| 国产成人精品视频免费看| hd在线播放日本一区二区| 色噜噜国产精品一区二区| 欧美图片久久一区二区三区| 亚洲一区二区三区一品精|