无码人妻久久一区二区三区免费丨,91精品欧美久久久久久,色肉色伦交av色肉色伦,操逼贱货调教操骚逼视频

Your Position: Home > Product > Chemical Biology

Epoxy modified magnetic beads (PuriMag G-Epoxy beads)

2025/6/16 viewers
  • BrandPuriMag
  • TypePuriMag G Series
  • order
Introduction

Ordering information

Name

Cat. No.

Vol.

Scheme

GS-Epoxy

5 C spacer

PMG001-2

PMG001-5

2ml 

5ml

GL-Epoxy

15 C spacer

PMG002-2

PMG002-5

2ml 

5ml

1. Overview

PuriMag? G-Epoxy Epoxy-Functionalized Magnetic Nanoparticles are pre-activated, uniform, polymer-coated superparamagnetic nanoparticles. The beads feature a surface coated with a high density of epoxy functional groups, designed for covalent binding to ligands containing aminesthiols, or hydroxyl groups.

Binding Conditions:

            Hydroxyl-containing ligands: pH 11–12

        Amine-containing ligands: pH > 9

        Thiol-containing ligands: pH 7.5–8.5

        Water-insoluble ligands may be coupled in organic solvents (Dioxane, DMF, DMSO). Epoxy-activated beads are optimal for coupling large proteins.

Features & Advantages:

        Pre-activated for immediate use

        Efficient covalent coupling at pH 9–1220–40°C for 16–24 h

        Stable covalent bonds with minimal ligand leaching

        Creates reusable immunoaffinity matrices

        Low non-specific binding

        Immobilization capacity: 1–30 mg protein or 0.1–3 mg peptide per gram beads

Applications:
Cell sorting, immunoprecipitation, purification of antibodies, proteins/peptides, DNA/RNA

Schematic of Coupling Mechanism:



2. product description

Product Specifications

Description

Polymer coated Fe3O4 nanoparticles

Particle Size

200 nm

Number of Beads

~1.7×1010 beads/mg

Matrix

Proprietary polymer

Functional group

Epoxy group

Group density

~300 μmole / g of Beads

Magnetization

60~70 EMU/g

Formulation

10 mg/ml suspension in alcohol

Stability

pH 3.5~10, 4~80 , most organic solvents

Storage

1 year at 2~8 . Do not freeze.

3. Instructions for Use

Note: The following protocol is an example for coupling amine-containing ligands to PuriMag? Epoxy-Activated Magnetic Nanoparticles.

Optimization of bead quantity for specific samples is strongly recommended. Insufficient ligand loading may increase non-specific binding, while excessive loading may cause steric hindrance. For affinity matrices, use 1–30 mg protein or 0.1–3 mg peptide per gram beads. Scale protocol proportionally as needed.

A. Required Materials

        Magnetic Racks: For 2×50 mL or 2×15 mL tubes (e.g., Mrack03); For 12×1.5–2 mL tubes (e.g., Mrack02)

        Coupling Buffer: 0.1 M Sodium Carbonate or 0.1 M Sodium Phosphate, pH 8.5–10

                Note: Minimal ionic strength is critical. Buffer must NOT contain amines (e.g., Tris), thiols, hydroxyls, or phenols. Wash/storage buffers may contain these.

        Blocking Buffer: 1 M Ethanolamine, pH 9.0

        Wash Buffer: PBS, pH 7.4

B. Coupling Protocol
*Note: PuriMag? Epoxy Beads are supplied as 10 mg/mL suspension in ethanol. Store at 4°C. Vortex before use.*

        1.Transfer 2 mg beads to microcentrifuge tube.

        2.Place tube on magnetic rack for 1 min. Remove supernatant. Resuspend beads in 50 μL coupling buffer.

        3.Repeat Step 2 three times.

                *Note: Use hydrated beads immediately.*

        4.Dissolve protein/peptide in 50 μL coupling buffer.

                *Note: Optimize concentration empirically. Recommended: 1–10 mg/mL for proteins; >200 μmol/mL for small peptides.*

        5.Add protein solution to washed beads. Resuspend and incubate.

                *Note: Amine ligands (proteins): 15–48 h at 25°C (or 48–72 h at 4°C for sensitive ligands). Peptides/hydroxyl/thiol ligands: 4–15 h at 25–75°C.*

        6.Wash beads 3× with 1 mL PBS.

        7.Add 0.5–1 mL blocking buffer. Incubate ≥4 h or overnight at 4°C.

        8.Wash beads 4–6× with 1 mL PBS.

        9.Resuspend in PBS with 0.1% sodium azide. Store at 2–8°C (avoid freezing).

C. Coupling Efficiency Optimization
C-1. Ligand Loading Optimization
    Ligand coupling increases linearly with concentration until saturation, then plateaus. Test 1–10 mg ligand per gram beads for optimal density.

C-2. Buffer & pH
    Use 10 mM buffer strength for pH control. Suitable buffers: Carbonate, Borate, Phosphate. Avoid Tris, glycine, or nucleophiles. Optimal coupling pH:

        Hydroxyl ligands: pH ~13

        Amine/thiol ligands: pH 9–13

            *Note: Higher pH accelerates reaction but promotes epoxy hydrolysis.*

C-3. Temperature & Duration
    Standard: Overnight at 20°C. For stable ligands, increase temperature (≤40°C) to reduce time. Minimize duration to prevent ligand degradation.

C-4. Blocking & Washing

        1.Block residual groups with 1M ethanolamine (pH 8–9, 4 h).

        2.Wash thoroughly with coupling buffer.

        3.Remove ionically-bound ligands by alternating washes:

            Acidic: 100 mM acetate + 500 mM NaCl, pH 4.0

            Basic: 100 mM PBS + 500 mM NaCl, pH 8.0

D. General Affinity Purification Protocol
Note: While nucleic acid purification is straightforward, protein purification requires target-specific optimization.

        1.Transfer optimized bead amount to tube. Separate magnetically (1–3 min). Discard supernatant.

                *Note: Titrate beads against target abundance. Typical binding: 1–20 μg target protein per mg beads.*

        2.Wash beads 3× with 5 bead volumes PBS (30 sec resuspension per wash).

        3.Incubate beads with crude sample containing target (1–2 h at RT or optimized temperature).

        4.Wash with PBS or 1M NaCl until eluate OD??? < 0.05.

        5.Elute target using: Low pH (2–4); High pH (10–12); High salt; Heat; Affinity elution; Boiling in SDS-PAGE buffer


Appendix: Immobilization of Small Molecule Compounds Containing Phenol or Primary Amine Groups onto Epoxy Magnetic Beads in Organic Phase

For screening purposes, initial optimization of ligand loading density on the beads is essential. Varying ligand concentration allows control over immobilization density. This protocol demonstrates ligand immobilization at four concentrations (0 mM, 2 mM, 10 mM, and 50 mM) on epoxy beads.

1. Materials
1.1 Beads & Ligand
        PuriMag? G-Epoxy Beads: 10 mg (Functional group density: ~200 nmol/mg)
        Ligand: ~30 mg

1.2 Reagents
        N,N-Dimethylformamide (DMF): 15 mL
        Potassium carbonate (K?CO?), M.W. 138.21: 50 mg
        Methanol (MeOH): 7 mL

1.3 Equipment
        Centrifuge, Vortex Mixer, Rotating Mixer, Ultrasonic Disperser, Magnetic Stand

2. Method
2.1 Binding Mechanism


2.2 Procedure

        1.Prepare 1 mL of 50 mM ligand solution in DMF.

        2.Aliquot 2.5 mg epoxy beads into four 1.5 mL centrifuge tubes.

        3.Perform magnetic separation at RT. Discard supernatant.

        4.Add 500 μL DMF, disperse beads via ultrasonication.

        5.Perform magnetic separation at RT. Discard supernatant.

        6.Repeat steps 4-5 twice more (total 3 washes).

        7.Add DMF and prepared ligand solution. Disperse beads via ultrasonication.

Concentration (mM)

0

2

10

50

Epoxy beads (mg)

2.5

2.5

2.5

2.5

DMF (μl)

500

480

400

0

50 mM ligand (μl)

0

20

100

500

Potassium carbonate (mg)

0

1.4

7

35

Total (μl)

500

500

500

500

                *Note: Add ligand solution after DMF to prevent localized high concentration.*

        8.Add 10 molar equivalents K?CO? to ligand (e.g., 35 mg K?CO? for 50 mM ligand). Mix via ultrasonication.

                (Alternatively: Pre-weigh K?CO? in separate tube before adding ligand/beads)

        9.React at 60°C for 16–20 h (overnight) with vortex mixing in incubator.

                (K?CO? will remain undissolved)

        10.Perform magnetic separation at RT. Discard supernatant.

        11.Add 500 μL 50% DMF, disperse beads via ultrasonication.

        12.Perform magnetic separation at RT. Discard supernatant.

                (If beads aggregate at solution interface, discard only upper layer)

        13.Repeat steps 11-12 once more (total 2 washes).

        14.Add 500 μL ultrapure water, disperse beads via ultrasonication.

        15.Perform magnetic separation at RT. Discard supernatant.

        16.Add 500 μL 50% MeOH, disperse beads via ultrasonication.

        17.Perform magnetic separation at RT. Discard supernatant.

        18.Repeat steps 16-17 twice more (total 3 washes).

        19.Resuspend in 100 μL 50% MeOH. Store at 4°C.

                (Ligand-immobilized bead concentration: 0.5 mg/20 μL)


More Products
菜籽色绿松石盘玩效果图| 亚洲午夜精品一区二区三区| 亚洲中久无码永久在线看| 欧美婷婷六月丁香综合区| 无码人妻h动漫中文字幕| 欧美精品一国产成人91| 老司机精品一区在线视频| 久久青草欧美一区二区三区| 91插插插影库| 在国产线视频a在线视频| H肉视频无遮挡在线播放| 国产精品羞羞答答色哟哟| 久热操视频精品在线观看| 黄色网站肏骚屄| 国产电影 一区二区三区| 男人女人叉叉叉视频免费| 啊啊啊好爽草我视频网站| 国产第一页第二页第六页| 在线天堂资源www官网| 人妻少妇一区二区三区在线| 操逼大奶子美女操逼网站| 日本一区二区不卡视频播放| 野外打炮一区二区三级片| 久久国产最新精品小视频| AV片在线观看| 操逼大鸡巴内射黄色网站| 看黄色视频网站丰满少妇| 大屌插阴道抖动摩擦视频| 嗯啊好厉害视频| 鲁鲁视频www一区二区| 欧美性做爰片免费视频看| 日韩性生活视频观看网络| 日韩久久久久久久久不卡| 青青久久AV资源绿巨人| 亚洲熟女少妇a一区二区| 韩国一区二区三区精品视频| AV无码无在线观看免费| 中文字幕日韩第八页在线| 情久久久久久久久久久久| 亚洲熟妇私密处高清视频| 偷窥少妇久久久久久久久|